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1. The Compatibility of Browser and Operating System (OS) 

ANPELA is powered by R shiny. It is free and open to all users with no login requirement and can be readily accessed by a variety of popular web browsers and operating
systems as shown below.

2. Required Formats of the Input Files 

In general, the file required at the beginning of ANPELA 2.0 analysis should be flow cytometry standard format (FCS). The structure of FCS are as followed, parameters
needed in ANPELA workflow are shown in orange:

The data used to quantify single-cell proteomic is extracted from the "exprs" of the FCS. Column name of the data matrix was generated from the "name" and "desc" of
the FCS parameters, indicating the protein and the fluorescent antibody or non-radioactive rare-earth-metal isotopes used to stain it. And each row corresponds to a
single cell detected by the cytometry.

2.1 Flow Cytometry Data for Cell Subpopulation Identification (CSI) 



In cell subpopulation identification that based on flow cytometry data, ANPELA compares protein expression of cells under two different conditions, therefore at least
two samples for each condition (four FCS files in total) are needed. A metadata csv file which matches the file name to the condition is also needed in the process, the
first column is the name of the FCS (without filename extension) from the sample followed by the second column which is the condition of the sample. For compensation
method expect CytoSpill additional single stained control samples are needed. Sample data of this data type can be downloaded .

2.2 Mass Cytometry Data for Cell Subpopulation Identification (CSI) 

In cell subpopulation identification based on mass cytometry data (MC/CyTOF), ANPELA compares protein expression of cells under two different conditions, therefore at
least two samples for each condition (four FCS files in total) are needed. A metadata which matches the file name to the condition is also needed in the process, the first
column is the name of the FCS file (without filename extension) followed by the second column which is the condition of the sample. Sample data of this data type can be
downloaded .

2.3 Flow Cytometry Data for Pseudo-time Trajectory Inference (PTI) 

In pseudo-time trajectory inference based on flow cytometry data, ANPELA 2.0 can generate a pseudo-progression trajectories based on samples from more then two
different time point meaning that at least two FCS files (one for each time) should be uploaded by the user. A metadata csv file specifies a time for each FCS file is also
needed, and the first column of the csv are file names of FCS files followed by the second column containing time points when the sample was collected. For
compensation method expect CytoSpill additional single stained control samples are needed.

As for evaluation under Criterion Cd (biological meaning), an extra csv file containing the order of proteins in prior known signal transduction cascades is needed, and the
format requirements for the csv are shown as the following figure, each column represents a prior known protein activation pathway, form first line to the bottom
conform to the sequence of protein activation. All of the proteins in the pathway csv should be included in the marker selected in step two and named same as the
markers. Sample data of this data type can be downloaded .

http://idrblab.cn/anpela2024/ANPELA2/CSI_FC%20Raw%20FCS%20Files.zip
http://idrblab.cn/anpela2024/ANPELA2/CSI_FC%20Raw%20FCS%20Files.zip
http://idrblab.cn/anpela2024/ANPELA2/CSI_MC%20Raw%20FCS%20Files.zip
http://idrblab.cn/anpela2024/ANPELA2/CSI_MC%20Raw%20FCS%20Files.zip
http://idrblab.cn/anpela2024/ANPELA2/PTI_FC%20Raw%20FCS%20Files.zip
http://idrblab.cn/anpela2024/ANPELA2/PTI_FC%20Raw%20FCS%20Files.zip


2.4 Mass Cytometry Data for Pseudo-time Trajectory Inference (PTI) 

In Pseudo-time Trajectory Inference based on mass cytometry data, ANPELA 2.0 can generate a pseudo-progression trajectories based on samples from more than two
different time points meaning that at least two FCS files (one for each time) should be uploaded by the user. A metadata csv file specifies a time for each FCS file is also
needed, and the first column of the csv are file names of FCSs followed by the second column containing time points when the sample was collected.

As for evaluation under Criterion Cd (biological meaning), an extra csv file containing the order of the respective proteins in known signal transduction cascades is
needed, and the format requirements for the csv are shown as the following figures. Each column represents a prior known protein activation pathway, from first line to
the bottom conform to the sequence of protein activation. All of the proteins in the pathway csv should be included in the marker selected in step two and named as the
marker. Sample data of this data type can be downloaded .

3. Step-by-step Instruction on the Usage of ANPELA 2.0 

This website is free and open to all users and there is no login requirement, and can be readily accessed by all popular web browsers including Google Chrome, Mozilla
Firefox, Safari and Internet Explorer 10 (or later), and so on. Quantification and comprehensive performance assessment for single-cell proteomics are started by clicking
on the "Single-cell Proteomics" panel on the homepage of ANPELA 2.0. The collection of web services and the whole process provided by ANPELA 2.0 can be summarized
into 3 steps: (3.1) uploading single-cell proteomics data, (3.2) data quantification workflow, and (3.3) performance assessment A report containing evaluation results is
also generated and can be downloaded in the format of PDF, HTML and DOC. The flowchart below summarizes the whole processes in ANPELA 2.0.

3.1 Uploading Your Data or the Sample Data Provided in ANPELA 

There are 3 radio checkboxes and a drop-down box in STEP-1 on the left side of the analysis page. Users can choose to upload their own cytometry data or to directly load
sample data. The type of the study (cell subpopulation identification/pseudo-time trajectory inference) and measurement method (flow cytometry/mass cytometry) are
selected in the remaining 2 radio checkboxes below.

And four different merge methods for users to choose from the drop-down box: (1) Ceil: Up to fixed number (specified by fixed Num) of cells are sampled without
replacement from each FCS file and combined for analysis. (2) Fixed: A fixed number (specified by fixed Num) of cells are sampled (with replacement when the total
number of cells are led than fixed Num) from each FCS files and combined for analysis. (3) All: All cells from each FCS file are combined for analysis and for method. (4)
Min: The minimum number of cells among all the selected FCS files are sampled from each FCS file and combined for analysis.

Fixed number in "Ceil" or "Fixed" can be assigned by the input box below.

http://idrblab.cn/anpela2024/ANPELA2/PTI_MC%20Raw%20FCS%20Files.zip
http://idrblab.cn/anpela2024/ANPELA2/PTI_MC%20Raw%20FCS%20Files.zip


4 sets of sample data are also provided in this step facilitating a direct access and evaluation of ANPELA 2.0. These sample data are all benchmark datasets collected from
previous articles, including (1) CSI-FC datasets of flow cytometry-based cell subpopulation identification which contains the blood and thymus samples from three
myasthenia gravis patients and six healthy controls. (2) CSI-MC datasets of mass cytometry-based cell subpopulation identification which contains 6 peripheral blood
mononuclear cells sample and 6 intestinal biopsies samples. (3) PTI-FC datasets of flow cytometry-based pseudo-time trajectory inference which contains 6 sequential
time points of human embryonic stem cell line HUES9 after the induction of hematopoietic differentiation. (4) PTI-MC datasets of mass cytometry-based pseudo-time
trajectory inference which contains the peripheral blood mononuclear cells sampled at 7 sequential time points after the activation by pVO4.

3.2 Feature Selection and Data Preprocessing (Compensation & Transformation & Normalization & Signal Clean) 

Quantification of cytometry-based single-cell proteomics data requires a work flow consisting of compensation, transformation, normalization and signal clean.

(1) Data Compensation Both flow cytometry and mass cytometry suffer from signal crosstalk across detection channels which can be corrected by compensation methods
that use spillover coefficients for each channel. Compensation method in ANPELA includes AutoSpill, flowCore, MetaCyto and None for flow cytometry data; CATALYST,
CytoSpill and None for mass cytometry data. (2) Data Transformation FC and MC raw data are often characterized by skewed distribution making it hard for visualization
and clustering. Therefore, transformation is adopted in ANPELA 2.0, in order to bring the expression peaks as close to a normal distribution as possible for subsequent
data analysis. There are 15 methods for data transformation: Arcsinh Transformation, Asinh with Non-negative Value, Asinh with Randomized Negative Value,
Biexponential Transformation, Box-Cox Transformation, FlowVS Transformation, Hyperlog Transformation, Linear Transformation, LnTransform, Log Transformation,
Logicle Transformation, QuadraticTransform, ScaleTransform, TruncateTransform and None for both FC and MC data. (3) Data Normalization The acquisition time in FC
and MC differs, from a few minutes in FC, up to a whole day in MC for barcoded samples, and therefore requires different approaches for normalizing the data. There are
4 methods for data normalization: GaussNorm, WarpSet and None for FC data; Bead-based Normalization, GaussNorm, WarpSet and None for MC data. (4) Singal Quality
Check and Cleaning In cytometry, signal shift can be caused by several reasons, including tube clog and unstable data acquisition. Therefore, it is necessary to analyze data
quality and delete invalid data through different signal-clean methods. Four signal clean methods are adopted in ANPELA 2.0: FlowAI, FlowCut and None for FC data;
FlowAI, FlowClean, FlowCut and None for MC data.

A detailed explanation on each compensation, transformation, normalization, signal clean methods is provided in Section 4 of this Manual. After selecting preferred
methods, please proceed by clicking the "PROCESS" button, a summary of the preprocessed data will be shown on the left. The resulting data can be downloaded by

https://pubmed.ncbi.nlm.nih.gov/33774709/
https://pubmed.ncbi.nlm.nih.gov/27178470/
https://pubmed.ncbi.nlm.nih.gov/33752602/
https://pubmed.ncbi.nlm.nih.gov/22902532/
https://pubmed.ncbi.nlm.nih.gov/32322369/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/27153492/
https://pubmed.ncbi.nlm.nih.gov/32322369/
https://pubmed.ncbi.nlm.nih.gov/32322369/


clicking the "Download" button.
After the quantification process, please select the protein marker (column name) you want for subsequent process from the drop-down list on the bottom.

3.3 Evaluation of the Processing Performance from Multiple Perspective 

In ANPELA 2.0, both cell subpopulation identification and pseudo-time trajectory inference has four well-established criteria for comprehensive evaluation on the
performance of selected quantification workflow.

For Cell Subpopulation Identification(CSI), those criteria includes:

Criterion Ca: The Classification Accuracy of Distinct Phenotypes based on Cell Subpopulations
(Phongpreecha T, et al. Sci Adv. 6: eabd5575, 2020)

After cell subpopulation identification, we use KNN to classify cells within each cluster into two different conditions. F1 score or AUC are used to evaluate the accuracy
between the classification result and the real condition label.

https://pubmed.ncbi.nlm.nih.gov/33239300/
https://pubmed.ncbi.nlm.nih.gov/33239300/
https://pubmed.ncbi.nlm.nih.gov/33239300/
https://pubmed.ncbi.nlm.nih.gov/33239300/
https://pubmed.ncbi.nlm.nih.gov/33239300/


Criterion Cb: The Tightness of Clusters with or without Predetermined Manual Labels
External Criterion "Precision" (Jiang H, et al. Bioinformatics. 34: 3684-3694, 2018)

In order to assess the level of precision of the clusters among two conditions for each cell subpopulation, two well-established measures, purity and Rand index, are
calculated by matching the cluster structures and the priori condition information of data.

https://pubmed.ncbi.nlm.nih.gov/29771290/
https://pubmed.ncbi.nlm.nih.gov/29771290/
https://pubmed.ncbi.nlm.nih.gov/29771290/
https://pubmed.ncbi.nlm.nih.gov/29771290/
https://pubmed.ncbi.nlm.nih.gov/29771290/


Internal Criterion "Coherence" (Lee HC, et al. Bioinformatics. 33: 1689-1695, 2017)

Coherence evaluation is based on the hypothesis that an ideal clustering result should have high similarity within each cluster and high heterogeneity between clusters.
Therefore, Silhouette coefficient (SC) which measures how close a datum is to its own cluster compared to the other clusters are used to evaluate the coherence. Similar
measurements such as Xie-Beni index (XB), Calinski-Harabasz index (CH), Davies-Bouldin index (DB) are also adopted in ANPELA 2.0.(Lee HC, et al. Bioinformatics. 33:
1689-1695, 2017)

https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/
https://pubmed.ncbi.nlm.nih.gov/28158442/


Criterion Cc: The Robustness of Identified Biomarkers among Randomly Sampled Subsets
(Li B, et al. Nucleic Acids Res. 45(W1): W162-W170, 2017)

After cell subpopulation identification, each cluster is random sampled creating three subset and P-value of each protein between different conditions are used in order to
find biomarker within each subset. For each cluster, the consistency score of biomarkers found within three subsets is calculated, in order to evaluate the robustness of
the quantification workflow.

https://pubmed.ncbi.nlm.nih.gov/28525573/
https://pubmed.ncbi.nlm.nih.gov/28525573/
https://pubmed.ncbi.nlm.nih.gov/28525573/
https://pubmed.ncbi.nlm.nih.gov/28525573/
https://pubmed.ncbi.nlm.nih.gov/28525573/


Criterion Cd: The Correspondence between Identified Biomarkers and Reliable Reference
(Suwandi JS, et al. J Autoimmun. 107: 102361, 2020)

A T-test is conducted in order to find differentially expressed protein between two conditions of all sampled cells. Then the recall of the prior known biomarkers is
calculated in order to evaluate the correspondence of the quantification workflow.

For Pseudo-time Trajectory Inference(PTI), those criteria includes:

Criterion Ca: The Conformance of the Inferred Pseudo-time with Physical Collection Time

https://pubmed.ncbi.nlm.nih.gov/31776056/
https://pubmed.ncbi.nlm.nih.gov/31776056/
https://pubmed.ncbi.nlm.nih.gov/31776056/
https://pubmed.ncbi.nlm.nih.gov/31776056/
https://pubmed.ncbi.nlm.nih.gov/31776056/


(Ji Z, et al. Nucleic Acids Res. 44: e117, 2016)

The Conformance of the selected quantification workflow is assessed by comparing the inferred trajectory with the sample collected time. Specifically, we calculated the
probability that the order of the two cells in the pseudo-time is consistent with the actual collection time.

Criterion Cb: The Smoothness of Protein Levels through the Inferred Trajectory
(Ahmed S, et al. Bioinformatics. 35: 47-54, 2019)

The Smoothness of the inferred trajectory for each protein is scored by calculating the expression differences of consecutive cells in the pseudo timeline. The
performance of the selected quantification workflow is assessed by p-value which compares all protein smoothness scores between inferred order and random order.

https://pubmed.ncbi.nlm.nih.gov/27179027/
https://pubmed.ncbi.nlm.nih.gov/27179027/
https://pubmed.ncbi.nlm.nih.gov/27179027/
https://pubmed.ncbi.nlm.nih.gov/27179027/
https://pubmed.ncbi.nlm.nih.gov/27179027/
https://pubmed.ncbi.nlm.nih.gov/30561544/
https://pubmed.ncbi.nlm.nih.gov/30561544/
https://pubmed.ncbi.nlm.nih.gov/30561544/
https://pubmed.ncbi.nlm.nih.gov/30561544/
https://pubmed.ncbi.nlm.nih.gov/30561544/


Criterion Cc: The Robustness of Inferred Trajectories among Randomly Sampled Subsets
(Qiu P, et al. Nat Biotechnol. 29: 886-91, 2011)

In this criterion, four subsets are created by extracting 20% cells from the original data. The selected quantification workflow is applied on the subsets to generate four
inferred trajectories. The Spearman rank correlation coefficient or Kendall rank correlation coefficient is calculated by comparing the subsets’ trajectory with the original
one.

https://pubmed.ncbi.nlm.nih.gov/21964415/
https://pubmed.ncbi.nlm.nih.gov/21964415/
https://pubmed.ncbi.nlm.nih.gov/21964415/
https://pubmed.ncbi.nlm.nih.gov/21964415/
https://pubmed.ncbi.nlm.nih.gov/21964415/


Criterion Cd: The Correspondence between Inferred Dynamics and Prior Biological Knowledge
(Verrou KM, et al. Cytometry A. 97: 241-252, 2020)

In this criterion, proteins were sequenced according to the order they reach peak expression in pseudo-time. The correspondence score of the selected quantification
workflow is calculated by comparing its peak expression sequence with the prior known signal transduction pathway.

https://pubmed.ncbi.nlm.nih.gov/32100455/
https://pubmed.ncbi.nlm.nih.gov/32100455/
https://pubmed.ncbi.nlm.nih.gov/32100455/
https://pubmed.ncbi.nlm.nih.gov/32100455/
https://pubmed.ncbi.nlm.nih.gov/32100455/


4. A Variety of Methods for Data Preprocessing 

4.1 Compensation Methods 

AutoSpill. AutoSpill uses single-color controls combine automated gating which calculate spillover matrix based on robust linear regression and iterative refinement
to reduce error. (Roca CP, et al. Nat Commun. 12(1):2890, 2021).

CATALYST. CATALYST is an compensation methods for mass cytometry data that can calculate a spillover matrix based on single-stain beads which are used to
compensation mass cytometry data. (Helena L, et al. Bioconductor. DOI: 10.18129/B9.bioc.CATALYST).

CytoSpill. By finite mixture modeling and sequential quadratic programming achieve optimal error, CytoSpill can quantifies and compensates the spillover effects in
Mass cytometry data without requiring the use of single-stained controls. (Miao Q, et al. Cytometry A. 99(9):899-909, 2021).

FlowCore. Compensation methods from FlowCore can provides an estimation of the spillover matrix based on single-color controls or extract pre-calculated spillover
matrix from original FCS by checking valid keywords which are used to compensate the corresponding data. (Hahne F, et al. BMC Bioinformatics. 10:106, 2009).

MetaCyto. MetaCyto can extract the pre-calculated spillover matrix of each FCS file and use it to compensate corresponding data. (Hu ZC, et al. Cell Rep. 24(5):1377-
1388, 2018).

4.2 Transformation Methods 

Arcsinh Transformation . The definition of this function is currently x<-asinh(a+b*x)+c) and is used to convert to a linear valued parameter to the natural logarithm
scale. By default a and b are both equal to 1 and c to 0. (Rybakowska P, et al. Comput Struct Biotechnol J. 18:874-886, 2020).

Asinh with Non-negative Value . This is the suggested methods by Xshift. Before asinh transformation, a specified noise threshold (set at 1) will be subtracted from
every raw value and then all the negative values will be set to zero. (Liu X, et al. Genome Biol. 20(1):297, 2019).

Asinh with Randomized Negative Value . This is the suggested methods by Phenograph. Asinh with Randomized Negative Value is similar to Asinh with Non-negative
Value except that negative values are randomized to a normalization distribution rather than set to zero. (Liu X, et al. Genome Biol. 20(1):297, 2019).

Biexponential Transformation . Biexponential is an over-parameterized inverse of the hyperbolic sine and should be used with care as numerical inversion routines
often have problems with the inversion process due to the large range of values that are essentially 0. (Hahne F, et al. BMC Bioinformatics. 10:106, 2009).

Box-Cox Transformation . Box-Cox transformation is a transformation of non-normal dependent variables into a normal shape. Normality is an important assumption
for many statistical techniques; if your data isn’t normal, applying a Box-Cox means that you are able to run a broader number of tests. (Finak G, et al. Bioconductor.
DOI: 10.18129/B9.bioc.flowTrans).

FlowVS Transformation . FlowVS is a variance stabilization (VS) that removes the mean-variance correlations from cell populations identified in each fluorescence
channel. flowVS transforms each channel from all samples of a data set by the inverse hyperbolic sine (asinh) transformation. For each channel, the parameters of the
transformation are optimally selected by Bartlett’s likelihood-ratio test so that the populations attain homogeneous variances. The optimum parameters are then
used to transform the corresponding channels in every sample. (Azad A, et al. BMC Bioinformatics. 17:291, 2016).

https://pubmed.ncbi.nlm.nih.gov/34001872/
https://pubmed.ncbi.nlm.nih.gov/34001872/
https://pubmed.ncbi.nlm.nih.gov/34001872/
https://pubmed.ncbi.nlm.nih.gov/34001872/
https://pubmed.ncbi.nlm.nih.gov/34001872/
https://bioconductor.org/packages/release/bioc/html/CATALYST.html
https://bioconductor.org/packages/release/bioc/html/CATALYST.html
https://bioconductor.org/packages/release/bioc/html/CATALYST.html
https://bioconductor.org/packages/release/bioc/html/CATALYST.html
https://bioconductor.org/packages/release/bioc/html/CATALYST.html
https://pubmed.ncbi.nlm.nih.gov/33342071/
https://pubmed.ncbi.nlm.nih.gov/33342071/
https://pubmed.ncbi.nlm.nih.gov/33342071/
https://pubmed.ncbi.nlm.nih.gov/33342071/
https://pubmed.ncbi.nlm.nih.gov/33342071/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://pubmed.ncbi.nlm.nih.gov/30067990/
https://pubmed.ncbi.nlm.nih.gov/30067990/
https://pubmed.ncbi.nlm.nih.gov/30067990/
https://pubmed.ncbi.nlm.nih.gov/30067990/
https://pubmed.ncbi.nlm.nih.gov/30067990/
https://pubmed.ncbi.nlm.nih.gov/30067990/
https://pubmed.ncbi.nlm.nih.gov/32322369/
https://pubmed.ncbi.nlm.nih.gov/32322369/
https://pubmed.ncbi.nlm.nih.gov/32322369/
https://pubmed.ncbi.nlm.nih.gov/32322369/
https://pubmed.ncbi.nlm.nih.gov/32322369/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/31870419/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://pubmed.ncbi.nlm.nih.gov/19358741/
https://www.bioconductor.org/packages/release/bioc/html/flowTrans.html
https://www.bioconductor.org/packages/release/bioc/html/flowTrans.html
https://www.bioconductor.org/packages/release/bioc/html/flowTrans.html
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https://www.bioconductor.org/packages/release/bioc/html/flowTrans.html
https://www.bioconductor.org/packages/release/bioc/html/flowTrans.html
https://pubmed.ncbi.nlm.nih.gov/27465477/
https://pubmed.ncbi.nlm.nih.gov/27465477/
https://pubmed.ncbi.nlm.nih.gov/27465477/
https://pubmed.ncbi.nlm.nih.gov/27465477/
https://pubmed.ncbi.nlm.nih.gov/27465477/


Hyperlog Transformation . The HyperLog transform is a log-like transform that admits negative, zero, and positive values. The transform is a hybrid type of transform
specifically designed for compensated data. One of its parameters allows it to smoothly transition from a logarithmic to linear type of transform that is ideal for
compensated data. (Bagwell CB, et al. Cytometry A. 64(1):34-42, 2005).

Linear Transformation . The definition of this function is currently x <- a*x+b and is a basic transformation commonly used in preprocessing cytometry data. (Novo D,
et al. Cytometry A. 73(8):685-692, 2008).

LnTransform . The definition of this function is currently x<-log(x)*(r/d). The transformation would normally be used to convert to a linear valued parameter to the
natural logarithm scale. Typically, r and d are both equal to 1.0 and both must be positive. (Hahne F, et al. BMC Bioinformatics. 10:106, 2009).

Log Transformation . Log is one of the most commly used flow cytometry data transformation method (Arcsinh for mass cytometry data).The definition of this
function is currently x<-log(x,logbase)*(r/d). The transformation would normally be used to convert to a linear valued parameter to the natural logarithm scale.
Typically r and d are both equal to 1 and both must be positive. logbase = 10 corresponds to base 10 logarithm. (Schoof EM, et al. Nat Commun. 12(1):3341, 2021).

Logicle Transformation . Logicle transformation creates a subset of biexponentialTransform hyperbolic sine transformation functions which represent a particular
generalization of the hyperbolic sine function with one more adjustable parameter than linear or logarithmic functions. The Logicle display method provides more
complete, appropriate, and readily interpretable representations of data that includes populations with low-to-zero means, including distributions resulting from
fluorescence compensation procedures. (Diggins KE, et al. Methods. 82:55-63, 2015).

QuadraticTransform . The definition of this function is currently x <- a*x^2 + b*x + c, and has been adopted as a transformation method within FlowCore package.
(Hahne F, et al. BMC Bioinformatics. 10:106, 2009).

ScaleTransform . The definition of this function is currently x = (x-a)/(b-a). The transformation would normally be used to convert to a 0-1 scale. In this case, b would
be the maximum possible value and a would be the minimum possible value (Hahne F, et al. BMC Bioinformatics. 10:106, 2009).

TruncateTransform . In Truncate transformation all values less than a are replaced by a. The typical use would be to replace all values less than 1 by 1 and it is often
used to remove fluorescence values < 1 (Hahne F, et al. BMC Bioinformatics. 10:106, 2009).

4.3 Normalization Methods 

Bead-based Normalization. This method first identifies the isotope-containing bead events, converts the raw data to local medians, then the average across all files is
computed, these global means is utilized to calculate the slopes for each time point and finally multiplied by all data acquired from corresponding time. (Chevrier S, et
al. Cell Syst. DOI: 10.18129/B9.bioc.flowStats).

GaussNorm. This method normalizes a set of flow cytometry data samples by identifying and aligning the high density regions (landmarks or peaks) for each channel.
The data of each channel is shifted in such a way that the identified high density regions are moved to fixed locations called base landmarks. (Hahne F, et al.
Bioconductor. 6(5):612-620.e5, 2018).

WarpSet. WarpSet are normalization method from flowStats package which perform a normalization of flow cytometry data based on warping functions computed
on high-density region landmarks for individual flow channels. WarpSet is based on the idea (1) High density areas represent particular sub-types of cells.(2) Markers
are binary. Cells are either positive or negative for a particular marker.(3) Peaks should aline if the above statements are true. (Hahne F, et al. Bioconductor. DOI:
10.18129/B9.bioc.flowStats).

4.4 Signal Clean Methods 

FlowAI. FlowAI is an automatic method that check and remove suspected anomalies that derive from (i) abrupt changes in the flow rate, (ii) instability of signal
acquisition and (iii) outliers in the lower limit and margin events in the upper limit of the dynamic range. (Monaco G, et al. Bioinformatics. 32(16):2473-80,2016).

FlowClean. FlowClean track subset frequency changes within a sample during acquisition and reported aberrant time periods as a new parameter added to data file
allowing users to exclude those events. (Fletez-Brant K, et al. Cytometry A. 89(5):461-71, 2016).

FlowCut. FlowCut can identify and delete regions of low density and segments that are significantly different from the rest by calculating eight measures(mean,
median, 5th, 20th, 80th and 95th percentile, second moment (variation) and third moment (skewness)) and two parameters（MaxValleyHgt and MaxPercCut）.
(Justin Meskas, et al. bioRxiv. 2020).
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